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An infinite-order, Boussinesq-type differential equation for wave shoaling over vari-
able bathymetry is derived. Defining three scaling parameters – nonlinearity, the dis-
persion parameter, and the bottom slope – the system is truncated to a finite order.
Using Padé approximants the order in the dispersion parameter is effectively doubled.
A derivation is made systematic by separately solving the Laplace equation in the
undisturbed fluid domain and then addressing the nonlinear free-surface conditions.
We show that the nonlinear interactions are faithfully captured. The shoaling and
dispersion components are time independent.

1. Introduction
Boussinesq-type equations have been widely studied in recent years. The introduc-

tion of Padé approximants greatly improves the dispersion and shoaling characteristics
of these equations, making them an attractive tool for general coastal applications.
A review of the subject is given by Madsen & Schäffer (1998, referred to as MS
in the following). The methods used most often for deriving high-order Boussinesq
equations are based on two techniques: one is the choice of appropriate velocity
variables which improves the dispersion characteristics of the resulting equation, and
the other is enhancement of the equations by applying appropriate linear operators to
the continuity equation and the momentum equation. In MS the two methods were
combined leading to an improved dispersion relation. The variables used are normally
a velocity variable (the velocity at some fraction of the depth or the mean velocity)
and the free-surface elevation. This choice leads to a time-dependent system in which
dispersion, nonlinearity and shoaling are all coupled. In water of intermediate depth,
the highest order terms are required for representation of dispersion and shoaling.
This is successfully achieved by using Padé approximants. However, in previous stud-
ies there appears to be some trade off among the performance regarding nonlinearity,
shoaling and dispersion in the different sets of equations. Our primary goal is to
present an approach which performs well in all three respects.

The present approach is based on decoupling the problem into two subproblems.
One is the linear part of the problem, which involves solving the Laplace equation in
the undisturbed fluid domain, and accounts for dispersion and shoaling. The idea of
Boussinesq-type equations is to eliminate the vertical coordinate from the problem.
In § 2, this is achieved by the use of infinite power series expansions. The kinematic
bottom boundary condition then provides a relation between the horizontal and
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vertical velocities at the still water level. This relation defines the linear dispersion
and shoaling characteristics. The equation is then truncated to finite order. Using Padé
approximants to order (N,N) gives high accuracy (to order 2N) for a relatively low
effort. This enables us to obtain excellent dispersion and shoaling characteristics. The
rationale for obtaining the Padé approximation is presented in a rigorous manner.
It is shown that eliminating high-order terms in the PDE is analogous to a Padé
approximation. The terms of O(N + 2, N + 4, . . . 2N) in the dispersion parameter are
eliminated. The time evolution which contains the nonlinear part of the problem is
addressed in § 3, using a Taylor series of order m. Typically the order m required to
keep an overall prescribed accuracy level does not exceed N.

The full accuracy of the dispersion and shoaling, attained in the linear part of the
problem, is carried over to the nonlinear interaction. This is due to the decoupling of
the linear and the nonlinear parts of the problem.

Section 4 presents an analysis of the nonlinear performance of the model by
examining its second-order superharmonic and subharmonic transfer functions, as
well as the third-harmonic, nonlinear dispersion and side-band instability. Conclusions
are given in § 5.

In the Appendix, the exact shoaling gradient, which was derived by Madsen &
Sørensen (1992) using energy flux conservation, is derived directly from the fully
dispersive shoaling equation, in the same way that the approximate shoaling gradient
is found for the Boussinesq equations.

2. Eliminating the vertical coordinate
2.1. An infinite series solution of the Laplace equation on variable depth

The equations governing the irrotational flow of an incompressible inviscid fluid with
a free surface are

∇2φ+ φzz = 0, (1)

ηt + ∇φ · ∇η − φz = 0, z = η, (2)

φt + 1
2
(∇φ)2 + 1

2
φ2
z + gη = 0, z = η, (3)

φz + ∇φ · ∇h = 0, z = −h, (4)

where φ is the velocity potential, h the water depth, and η the surface elevation. The
origin is on the mean free surface and z is positive upwards. The horizontal gradient
operator relates φ to the horizontal velocity, u:

∇ =

(
∂

∂x
,
∂

∂y

)
, u = (u, v) = ∇φ, w = φz. (5)

One of the main ideas in Boussinesq-type theories is to reduce the three-dimensional
description to a two-dimensional one. The first step towards such a reduction is to
apply separation of variables and to introduce an expansion of the velocity potential
as a power series in the vertical coordinate:

φ(x, z, t) =

∞∑
n= 0

znφn(x, t) (6)
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By substituting this expansion into (1) we find

φ(x, z, t) =

∞∑
n= 0

(−1)n
(
z2n

(2n!)
∇2nφ0 +

z2n+1

(2n+ 1)!
∇2nφ1

)
(7)

which is a series solution with only two unknown functions φ0 and φ1. Note that the
velocities at the still water level are given by

u0 = ∇φ0, w0 = φ1. (8)

By the use of (7) and (8) the bottom boundary condition (4) can be expressed as

Lc{w0}+ Ls · {u0}+ ∇h · (Lc{u0}+ Ls{w0}) = 0 (9)

with

Lc =

∞∑
n= 0

(−1)n
h2n

(2n)!
∇2n, Ls =

∞∑
n= 0

(−1)n
h2n+1

(2n+ 1)!
∇2n+1 (10)

where ∇ is the gradient operator when applied to a scalar, and the divergence
when applied to a vector. This equation was given by MS, and it defines a general
relation between u0 and w0 which is of infinite order in h∇. It involves only h and
its gradient, but no higher derivatives of it. The series are convergent if φ0 has a
Fourier transform, since they correspond to the analytic functions sinh kh and cosh kh
where ik is the Fourier symbol of ∇. In the next section (9) is approximated at a
finite order in the dispersion parameter using Padé approximants. This procedure
introduces higher-order terms in the bottom slope, which are consequently truncated.

Following Rayleigh (1876), we may use the symbolic notation of Taylor series
operators by which (10) can be given in the compact form

Lc = Cos (h∇), Ls = Sin (h∇). (11)

Note that h and ∇ do not commute, so the powers in (11) are hn∇n and not (h∇)n.
It is worth noting that assuming a horizontal bottom (∇ h = 0), (9) may be written in
the form

w0 = Tan (h∇) u0 (12)

with Tan defined in analogy to Sin and Cos. In the Appendix (9) is solved with the
linearized surface boundary conditions to provide the exact linear dispersion relation
and the linear shoaling gradient.

In linear theory

∇w0 = −1

g
u0tt. (13)

Eliminating w0 between the last two equations gives an evolution equation for u0 from
which the linear dispersion relation (c2 = ω2/k2 = gh tanh kh/kh) is immediately
obtained. Here ω is the wave’s angular frequency and k is its wavenumber.

2.2. Approximate solutions of the Laplace equation

Our goal is to approximate (9) by a finite-order equation. This will correspond to
approximating the dispersion relation to a finite order in the dispersion parameter
µ = k∗h∗, where k∗ is a characteristic wavenumber and h∗ a characteristic depth.
The shoaling parameter is the characteristic bottom slope |∇ h|. Classical Boussinesq
theory is based on Taylor expanding the Tan operator, or tanh kh to O(kh)3. Even
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high-order Taylor expansions diverge beyond kh = π/2 due to a singularity (on the
imaginary axis) of the function tanh kh. It is preferable to employ Padé approximants
of tanh kh/kh (in terms of kh). The order in kh of a Padé (N,N) expansion (which
involves Nth derivatives) is 2N.

A simple truncation of the Taylor expansion of (9) would lead to

(1− 1
2
h2 ∇2 + 1

24
h4 ∇4)w0 + (h∇− 1

6
h3 ∇3 + 1

120
h5 ∇5) · u0

+∇h · [(h∇− 1
6
h3 ∇3 + 1

120
h5 ∇5)w0 + (1− 1

2
h2∇2 + 1

24
h4∇4)u0] = 0, (14)

with errors of O(kh)6 (note that u0 and w0 are of the same order). The terms which
include ∇h are even smaller. Since the slope parameter is independent of the dispersion
parameter, the same order of µ is maintained in the slope terms, neglecting terms
that are O(µ6, µ6∇h). Padé approximants allow a much higher (at least double) order
of accuracy without increasing the order of the derivatives. More importantly, they
converge beyond some of the singularities which make the Taylor series of tanh kh
diverge.

Instead of using the truncated Taylor series, MS applied the technique of successive
approximations to obtain an explicit expression for w0 in terms of u0 and used this
to eliminate the vertical velocity from the problem. In the present work we retain
w0 as one of the dependent variables and the relation between u0 and w0 remains
as one of our governing equations. Thus, we can apply the enhancement technique
from MS to the linear relation, (9). This is somewhat different from the approach of
MS, who applied the enhancement technique to the mass and momentum equations
(or equivalently, the free-surface boundary conditions). The advantage of the present
approach is that nonlinearity and enhancement are not mixed. Let us start the
enhancement with the case of uniform depth. Rather than just truncate (9) at some
level, n = N, one may first multiply it by an operator of the form

A = 1 + a2 h
2 ∇2 + a4 h

4 ∇4 + . . . . (15)

One way to determine the operator is to require that all terms of orders N + 2,
N + 4, . . . , 2N vanish. This apparently gives an equation that is correct to O(µ2N).
This gives rise to the familiar Padé (N,N) dispersion relation. For N = 4 we find that
(a2, a4, a6, a8) = (1/18, 1/504, 1/15120, 1/362880). The resulting PDE is

(1− 4
9
h2 ∇2 + 1

63
h4 ∇4)w0 + (h∇− 1

9
h3 ∇3 + 1

945
h5 ∇5) · u0 = 0 (16)

which is correct to µ8. The procedure shown here is analogous to Padé approximation
of the function tanh kh = sinh kh/ cosh kh. The coefficients obtained coincide with the
corresponding Padé coefficients.

For the case of variable depth, the elimination of high-order terms is more involved.
When multiplying powers of h∇, terms involving ∇h, (∇h)2,∇2h etc. arise. Since h is
variable, ∇ and h do not commute, and their ordering affects the product. In the
following we shall neglect terms that are O((∇h)2,∇2h) which arise in manipulating
(9). Thus, the present model, along with other Boussinesq-type models, is only valid
in situations in which the mild slope equation applies. It does not reproduce the
reflected wave field when high-order bottom variation terms are important (cf. Agnon
1999 for an analysis of the importance of high derivatives of the bottom variation).
The relevant terms can be incorporated in the model.

While the application of the operator (15) was sufficient for constant depth, variable
depth calls for an operator including odd powers of h∇. Thus, applying A + B∇h
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instead of A to (9), where

B = b1 h∇+ b3 h
3 ∇3 + . . . , (17)

it is possible to eliminate high-order mild-slope terms with an appropriate choice of
the coefficients b1, b2, . . . just as the higher-order constant-depth terms were eliminated
above by adjusting the coefficients a1, a2, . . . . The shoaling characteristics produced
by this approach are unfortunately not very good. The reason is that the error in
the dispersion relation affects the shoaling by introducing an error in kx (which is
reproduced well only for smaller kh than the values of kh for which the dispersion
approximation works well). kx appears in the usual analysis of the shoaling charac-
teristics of a monochromatic wave of the form η = A(x) exp [i(ωt− ∫ k dx)], where A
and k are slowly varying functions of x, see e.g. MS and the Appendix.

An alternative approach, which solves this problem, is to optimize the coefficients
b1, b2, . . . to obtain minimum errors in the shoaling characteristics for a certain range
of wavenumbers. The technique is to determine the linear shoaling gradient from (9)
multiplied by A + B∇h together with the linear surface conditions, similarly to the
procedure used by MS. While the constant-depth terms are still correct to O(µ8), the
mild-slope terms are formally in error at O(|∇ h| µ6). This truncation leaves us with
two coefficients which can be adjusted for optimal shoaling. Such a procedure was
followed by MS and we will show how their results can be used in the present work.

The exact shoaling gradient for Stokes waves, which serves as a reference, was
derived by Madsen & Sørensen (1992) from energy flux considerations. In the Ap-
pendix we derive the same exact shoaling gradient directly from (9) in the same way
that Madsen & Sørensen derived the shoaling gradient for Boussinesq-type equations.
This approach unifies the analysis.

Since the linear part of the present model is equivalent to the linear part of MS
we shall just relate the results of MS to the present formulation. First of all, we note
that w0 may be expressed in terms of the depth-averaged horizontal velocity in the
undisturbed fluid domain, U 0:

w0 = −∇ · (hU 0) U 0 =
1

h

∫ 0

−h
u dz. (18)

Substituting the linearized equation u0t = −g∇η in (4.11b) of MS and integrating the
result with respect to time yields (for the case of Padé (4,4) dispersion)

−(1− 4
9
h2 ∇2 + 1

63
h4 ∇4)U 0 + (1− 1

9
h2 ∇2 + 1

945
h4 ∇4)u0

+∇h[((1 + 2α2)h∇− (β2 + 1
27

+ 2
3
α2)h

3∇3) · U 0 + (−2α2h∇+ β2h
3∇3) · u0

]
= 0.

(19)

Multiplying this equation by h and taking its horizontal gradient, it can be written
(in the mild-slope approximation) in the form

(1− 4
9
h2 ∇2 + 1

63
h4 ∇4)w0 + (h∇− 1

9
h3 ∇3 + 1

945
h5 ∇5) · u0

+ ∇h · [(−(1 + 2α2)h∇+ (β2 + 1
27

+ 2
3
α2)h

3∇3)w0

+ (1− ( 3
9

+ 2α2)h
2∇2 + ( 5

945
+ β2)h

4∇4)u0

]
= 0. (20)

For the bottom-slope terms, the resemblance between the U 0-term in (19) and the w0-
term in (20) stems from the equivalence (in the mild-slope approximation) between
∇(h2n+1∇2nU 0) and h2n∇2n(∇ · (hU 0)), i.e. the transformation of this part of (19)
produces no new bottom-slope terms. MS found that the values (α2, β2) = (0.146488,
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0.00798359) give a mean-square error in the shoaling gradient of 3.5× 10−6, over the
range 0 < kh < 6. The shoaling gradient is defined as the ratio between Ax/A and
−hx/h, where A is the slowly varying amplitude of a monochromatic wave.

Now that the relation between w0 and u0 has been established, we turn to the
nonlinear part of the problem, the free-surface boundary conditions, which can be
viewed as evolution equations.

3. The nonlinear time-stepping problem
Following Zakharov (1968), Witting (1984) and Dommermuth & Yue (1987), we

choose to reformulate the dynamic and kinematic boundary conditions at the free
surface by introducing velocity variables and the velocity potential defined directly at
the free surface, i.e.

ũ ≡ (∇Φ)z= η, w̃ ≡ (Φz)z= η, (21)

Φ̃ ≡ Φ(x, y, η, t), Ṽ ≡ ∇Φ̃. (22)

Now spatial and temporal differentiation of Φ̃ involves the chain rule, and we have

∇Φ̃ = (∇Φ)z= η + ∇η(Φz)z= η + · · · = ũ+ w̃∇η + . . . , (23)

Φ̃t = (Φt)z= η + ηt(Φz)z= η + · · · = (Φt)z= η + w̃2 − w̃∇η · ũ+ . . . , (24)

where the time derivative of η has been eliminated by use of (2). After some algebra
the dynamic condition (3) can be expressed as

Φ̃t + η +
Ṽ · Ṽ

2
− w̃2

2
− w̃2

2
∇η · ∇η = 0. (25)

This is the formulation used by Dommermuth & Yue (1987). As an alternative, we
can apply the gradient operator to (25), which transfers the equation into a velocity
vector equation used by e.g. Witting (1984),

Ṽ t + ∇η + ∇
(
Ṽ · Ṽ

2
− w̃2

2
− w̃2

2
∇η · ∇η

)
= 0. (26)

Finally, the combination of (21) and (2) yields the kinematic condition

ηt − w̃ + ∇η · ũ = 0. (27)

We note that (26) and (27) express the fully nonlinear time-stepping problem, but
to solve the system, a closure between the quantities Ṽ , ũ, and w̃ is necessary. This
closure can be established by the use of (7) and (8), which lead to high-order relations
between the velocities at the free surface and the velocities at the still water level.
Since the vertical structure of the flow field is approximated by an algebraic function
of z, and further, the range of wave steepness kη = O(ε) is smaller than the range of
kh considered, it is sufficient to include just a few terms in a Taylor expansion about
the free surface in the manner used in perturbation theories. For definiteness, we
adopt the fourth-order expansion employed by other (4,4) Boussinesq-type models:

ũ = u0 + η∇w0 − η2

2
∇∇ · u0 − η3

6
∇∇2w0 +

η4

24
∇4u0 + O(ε5), (28)

w̃ = w0 − η∇ · u0 − η2

2
∇2w0 +

η3

6
∇2∇ · u0 +

η4

24
∇4w0 + O(ε5), (29)
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Ṽ = u0 + ∇
(
ηw0 − η2

2
∇ · u0 − η3

6
∇2w0 +

η4

24
∇4u0

)
+ O(ε5). (30)

When calculating short waves riding over long waves, kη becomes large, but so does
kh, and both the dispersion and nonlinearity of the model become less faithful.

The system of equations to be solved now consists of (26), (27), (28), (29), (30), and
(20), i.e. six coupled equations in six variables (counting vectors as one): the surface
elevation, the horizontal gradient of the free-surface velocity potential, the horizontal
and vertical velocities at the free surface and at the mean sea level. At each time step,
after marching (26) and (27) in time, the system to be solved for ũ, u0, w0 and w̃ is linear.

4. Evaluation of the nonlinear interaction
Convenient measures of nonlinear interaction over a horizontal bottom are the

transfer functions to superharmonics and to subharmonics via triad interaction. Since
the only approximation made was in the solution to the Laplace equation, it is easily
checked that the only error in the transfer functions in the present model stems from
the error in the dispersion relation. For the transfer functions the error will be due
to the error in the dispersion of the primary wave and the error in the dispersion of
the bound wave, which in the case of a superharmonic, has a higher value of kh and
thus a larger error than the primary waves. In the case of a subharmonic, the error
is determined by the relative error in the difference frequency, which is again greater
than the error for the primary waves. The expressions for the transfer functions in
the fully dispersive water wave problem can be found e.g. in Hasselmann (1962).

Figure 1 shows the second-order transfer functions for the present set of equations
normalized by the transfer functions for exact dispersion. Figure 1(a) shows the
accuracy of the second harmonic in a Stokes wave for the present Padé (4,4) model
(curve i) compared with the best Padé (4,4) model from MS (their U model). Vast
improvement is seen. Figure 1(b) shows the accuracy of the superharmonics and
the subharmonics for the present model. On the axes are shown the normalized
values of the frequencies of the primary waves. The value of 0.4 corresponds to kh
exceeding 6.3. The subharmonic of two waves with close wavenumbers (just below
the diagonal) is related to the wave setdown. It is driven by the radiation stress and
depends on the group velocity. The error in the setdown is related to errors in the
group velocity, which are greater than errors in the wave celerity. The subharmonics,
and the setdown are related to the wave-induced mean flow. Both the superharmonics
and the subharmonics are slightly underestimated by the model. Note the regular
form of the curves in figure 1 which attests to the proper balance of the theory.

In a similar way one can find the third harmonic and the amplitude dispersion of a
Stokes wave. The equations found in the literature contain trigonometric equivalences
in which expressions such as e.g. tanh 2kh and tanh 3kh are expressed in terms of
coth kh etc. Thus they are correct only for the Stokes theory. Thus we rederive their
full forms from the Zakharov equations, whose coefficients T , T̃ (1) and T̃ (4) are given
in the Appendix of Stiassnie & Shemer (1984) (the second sign in their equation (2a)
should be +). The expression for ω(2), the Stokes frequency correction, is given by

ω(2)

a2
=

2π2g

ω
T (k, k, k, k)

=

(
((gk)2 + ω4)ω2/ω + 2 (2 (gk)2 − ω2 ω2

2)
)2

16g2 ω
(
4ω2 − ω2

2

) +

(−(gk)2 ω + ω2
2 ω

3
)

4g2
, (31)

where ω and ω2 are the angular frequencies from the approximate Padé linear
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√h
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ωn/2π √h/g

Figure 1. (a) The relative amplitude of the second harmonic, a2/a2S , where a2 is given by the
Boussinesq-type (Padé (4,4)) model and a2S is the Stokes theory value. Curve (i) present model; curve
(ii) U model (MS). (b) The relative (to Stokes theory) second-order transfer function. Superharmonic
values shown above the diagonal, subharmonics below the diagonal.

dispersion relation for k and 2k, respectively. Here a is the wave amplitude. The
reduced form of this equation, valid for the exact dispersion relation, is given by

ω
(2)
S

a2
=
k3
(
9− 10 tanh (kh)2 + 9 tanh (kh)4

)
16 tanh (kh)3

√
k tanh (kh)/g

(32)
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S
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Figure 2. The relative value of the Stokes frequency correction, ω(2)/ω
(2)
S , Padé (4,4).

where S stands for Stokes theory (e.g. Whitham 1974). The expression for a3 is very
lengthy and is not expanded here. It contains ω, ω2 and ω3. In terms of Zakharov’s
coefficients it is

a3

a3
= 2π2g

√
ω3

ω3

(
T̃ (1)(3k, k, k, k)

ω3 − 3ω
+
T̃ (4)(−3k, k, k, k)

ω3 + 3ω

)
. (33)

The reduced form is given by

a3S

a3
=

3 k 2
(
1 + 8 cosh (kh)6

)
64 sinh (kh)6

(34)

(e.g. Wehausen & Laitone 1960). Figures 2 and 3 show the relative values of ω(2)

and the values of a3, respectively, for a Padé (4,4) dispersion relation. The good
performance of ω(2) in the range considered was not expected in view of its dependence
on ω2. For higher values of kh the error in ω(2) becomes positive and indeed grows
rapidly. However, in the range for which this model is considered, nonlinear dispersion
is faithfully reproduced. The large error in a3 for large kh is expected , since it depends
on ω3. For kh up to about 3 the agreement with Stokes theory is good.

In considering the side-band instabilities studied by Benjamin & Feir (1967), the
determining parameters are Ω(2), the frequency correction modified by the wave-
induced mean flow,

Ω(2) = ω(2) + ω̃(2), (35)

ω̃(2) = −kU +
∂ω

∂h
b (36)

(where U is the current associated with the induced mean flow potential φ10 and b is
the setdown), and ωkk , the derivative of the group velocity, cg , with respect to k. We
need an expression for φ10 which is valid for the present model (and does not rely on
trigonometric equivalences). Such a solution was derived by Agnon & Mei (1985). It
applies for the present model if their σ = ω2/g is replaced by the Padé approximation
to that expression. The homogeneous part of the long-wave equation which governs
φ10 remains unchanged in the present model, since it is exact at the long-wave limit.
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Figure 3. The value of the third harmonic amplitude. Curve (i) a3/(k
2a3), Padé (4,4);

curve (ii) a3S/(k
2a3).

From Agnon & Mei (1985) we get

b = −1

g
φ10t − g(k2 − σ2)a2

4ω2
, (37)

φ10t =
a2cg

4ω2(gh− c2
g)

((g2k2 − ω4)cg + 2g2ωk), (38)

U = φ10x = − 1

cg
φ10t. (39)

Figure 4 shows the relative values of ωkk and ω(2) for a Padé (4,4) dispersion relation;
ω̃(2) has a small error for kh < 6, while for ωkk , good agreement with the exact linear
dispersion relation is found only for kh up to about 3. As with the group velocity,
the error here is increased by taking an even higher derivative of ω with respect to
k. As for ω(2), the agreement for ω̃(2) is better than expected, due to opposite trends
in its ingredients. As kh increases, the error again rapidly increases. The onset of the
side-band instability is determined by the sign of ωkkΩ

(2); ωkk is negative and Ω(2)

becomes negative (instability) for kh > 1.363 which is also the value for the exact
theory. Thus the onset of the side-band instability is accurately modelled. For weakly
nonlinear waves, the bandwidth of the instability (divided by the wave amplitude)
is 4(Ω(2)/ωkk)

1/2. From figures 2 and 4 it is clear that in the range considered, the
error in this ratio is dominated by the error in ωkk . Thus the former is approximately
the inverse of the square root of the latter. Since the approximated ωkk becomes
considerably smaller than the exact value, the bandwidth of growing disturbances is
increased by more than 50% for kh = 6. The maximal growth rate is greater by a
similar factor.

In MS the expression for the amplitude of the second and third harmonic was
expanded in a power series in kh. Agreement with Stokes theory was attainable up to
O(µ4). In the present model all the nonlinear quantities agree with Stokes theory to
the same order as the dispersion relation does, i.e. to O(µ8).

In a shoaling model it is of interest to examine the combined effect of shoaling
and nonlinearity. In the standard model for water waves, the nonlinear shoaling
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S , Padé (4,4).

and modulation of wave trains and wave packets can be described by the well-
established nonlinear Schrödinger equation (NLS, cf. Benney & Newell 1967; Davey
& Stewartson 1974; Djordjevic and Redekopp 1978). We write here the form that
applies to wave shoaling in one horizontal dimension:

i
∂B

∂ξ
+ λ1

∂2B

∂τ2
− ν1|B|2B = −iµ1B, (40)

λ1 = ωkk/(2c
3
g), (41)

µ1 =
1

2cg

dcg
dξ

, (42)

ν1 = 4ω(2)/(c2cg), (43)

where B is the complex amplitude of the wave envelope, modified by a phase
shift due to the mean flow. We do not discuss the mean flow in detail, and just
note that its accuracy is similar to that of the nonlinear interaction. ξ = ε2x and
τ = ε(

∫ x
(dx/cg(ξ))− t) are the multiple scale coordinates.

In the present model, the coefficients are replaced by their approximate values.
Examining these approximate coefficients, we can see the fidelity of the model. The
shoaling is controlled by the shoaling coefficient µ1, which is identical to the one of
linear shoaling (see the Appendix). MS have shown that the latter is approximated
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very well in the range 0 < kh < 6. Terms in the bottom slope that are nonlinear
in ε might cause concern, most obviously since the higher harmonics have higher
waveumbers and are less accurate. These terms do not appear in NLS, neither do
they appear in lower-order (triad interaction) shoaling models on a steeper slope (cf.
Agnon & Sheremet 1997). Their contribution is higher order, hence their accuracy has
a very small influence on the leading-order, free waves. Next, consider the nonlinear
interaction. As in the analysis of waves on an even bottom, for the leading-order,
free waves, it is governed by Ω(2) = ω(2) + ω̃(2). We saw in figures 2, 4(b) that it is
accurately reproduced. Note that the nonlinear interaction at the leading order is
determined by the coefficient T in the Zakharov equation, which is reproduced well,
while higher-order (and less important), bound waves, such as a2 and further, a3

(which is determined by T̃ (1) and T̃ (4)), have greater errors. Finally, the modulation is
determined here, again, by the collinear modulation parameter ωkk , which was seen
in figure 2(a) to perform well only up to kh of about 3.

We may also write NLS for waves that are modulated in the transverse, y-direction.
Benney & Roskes (1969) studied oblique side-band instabilities. These are governed
again by Ω(2) and by a combination of the collinear modulation parameter ωkk , which
is negative, and in addition by the transverse modulation parameter cg/k, which is
positive. Thus oblique side-band instabilities can occur also when kh is smaller than
1.363. Since cg/k is better approximated than ωkk is, the latter remains the limiting
factor on the accuracy of the present model. Thus the oblique and the collinear
side-band instabilities are modelled with the same accuracy.

NLS is a narrow-band approximation, assuming a small spectral bandwidth. For
finite spectral separation, the Zakharov equation can be used (Stiassnie & Shemer
1984). Let us consider side-band instability for a finite-width side band. The accuracy
of the interaction kernel T for finite spectral width is represented quite well by ω(2)

(figure 2) for that case as well. At any rate, the limiting factor is again the modulation
parameter, which this time is

ω− − 2ω + ω+

K2
(44)

where ω− = ω(k−K) and ω+ = ω(k+K) are the side-band frequencies, and 2K is the
modulation band width. One option to try to assess the effect of the finite band width
on the accuracy of the modulation parameter, is by considering higher-order terms
in the spectral width, e.g. ωkkk , which is the coefficient of the next term appearing
in the modified Schrödinger equation due to Dysthe. Since the error in ωkkk is very
large, this approach would have led us to the erroneous conclusion that the error
in the finite band-width case is larger than the error for narrow spectra. Instead we
have examined directly the error in the modulation parameter (44) and found that
it is in fact smaller than the error for the modulation parameter in the narrow-band
case, ωkk . We carried out a similar analysis for the lower-order, (non-resonant) triad
interaction. There, again, the modulation parameter is most accurately reproduced at
the limit of triad resonance. At that limit it has the value cg which is reproduced by
the model more accurately than ωkk is. Thus the accuracy found for the narrow-band
case holds for finite band width as well.

5. Conclusions
A new Boussinesq-type formulation has been presented. The method decouples

the solution into two parts. One is the linear part of the system, which accounts
for shoaling and dispersive effects. It requires solution of the Laplace equation in a
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domain which is independent of time. This solution can be found most effectively
by enhancing the equation as well as presolving a substantial part of the problem.
The second, nonlinear part is the marching in time, using the nonlinear free-surface
boundary conditions. By separating the two parts, the accuracy of the linear dispersion
is carried in full to the nonlinear part of the system. This would have required a
horrendous number of terms if it was to be achieved in the traditional way, i.e. ending
up with only two governing equations: one for mass and one for momentum.

Using the velocities at the still water level as variables yields excellent performance
in terms of nonlinearity while retaining optimal dispersion characteristics. The non-
linear interaction was evaluated by computing the transfer functions to second-order
superharmonics and subharmonics in irregular waves, and the third-harmonic, non-
linear dispersion and side-band instability in regular waves. The same coefficients
describe (and place bounds on) the evolution of NLS (and Zakharov equation)
models. In the Appendix the exact shoaling model was used for an alternative deriva-
tion of the shoaling gradient which is not based on energy flux and does not neglect
reflection. It confirms the results of Madsen & Sørensen (1992).

This work was partly financed by the Danish National Research Foundation and
partly by the Danish Technical Research Council (STVF grant no. 9801635). Their
financial support is greatly appreciated.

Appendix. The exact linear shoaling gradient
In this Appendix we derive the exact linear dispersion relation and the exact linear

shoaling gradient on the basis of the combination of the bottom boundary condition
and the Laplace solution as given by (9) with (11). Invoking the linearized surface
boundary conditions this may be written as a wave equation in terms of the surface
elevation

Cos (h∇){ηtt} − g Sin (h∇){∇η} − ∇h · (g Cos (h∇){∇η}+ Sin (h∇){ηtt}) = 0. (A 1)

Restricting ourselves to one horizontal dimension, we look for solutions of the form

η(x, t) = A(x)ei(ωt−∫ k dx) (A 2)

where A, k, and h are slowly varying functions of x. When evaluating the derivatives
of η, only constant-depth terms and mild-slope terms are retained (i.e. only the zeroth
and first derivatives of A, k, and h). This leads to

∂nη

∂xn
=

(
(−ik)n + n(−ik)n−1Ax

A
− i

2
n(n− 1)(−ik)n−2kx

)
η. (A 3)

Looking at the right-hand side of this expression, we notice that the first and second
derivative of the first term with respect to −ik appears in the second and third terms.
Let p denote a polynomial (or Taylor series), then this observation leads to

p

(
∂

∂x

)
η =

(
p(−ik) + p′(−ik)

Ax

A
− i

2
p′′(−ik)kx

)
η (A 4)

where the prime stands for the derivative. Choosing the polynomial as (−1)nh2n/
(2n)!∂2n/∂x2n, n = 0, 1, 2 . . ., we get

Cos

(
h
∂

∂x

)
{ηtt} = −ω2

(
cosh (kh) + ih sinh (kh)

Ax

A
+

ih2

2
cosh (kh)kx

)
η. (A 5)
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Similarly, the polynomial (−1)nh2n+1/(2n+ 1)!∂2n+2/∂x2n+2, n = 1, 2 . . ., yields

Sin

(
h
∂

∂x

){
∂

∂x
η

}
=

(
− k sinh (kh)− i (sinh (kh) + kh cosh (kh))

Ax

A

− ih

2
(2 cosh (kh) + kh sinh (kh)) kx

)
η. (A 6)

For the remaining two terms in (A 1), we only need to retain the leading order in the
operators and thus it suffices to substitute −ik for ∂/∂x:

hx Cos

(
h
∂

∂x

){
∂

∂x
η

}
= hx (−ik cosh (kh)) η, (A 7)

hx Sin

(
h
∂

∂x

)
{ηtt} = −hxω2 (−i sinh (kh)) η. (A 8)

Substituting (A 5)–(A 8) in the unidirectional version of (A 1) yields, for the real part,
the dispersion relation

ω2 = gk tanh (kh), (A 9)

and, for the imaginary part, the shoaling equation

Ax

A

(
kh+ 1

2
sinh (2kh)

)
+
kx

k

(
kh cosh2 (kh)

)
+
hx

h
(kh) = 0. (A 10)

The final step is to utilize

kx

k
= − G

1 + G

hx

h
, G ≡ 2kh

sinh (2kh)
, (A 11)

which results from the dispersion relation (Madsen & Sørensen 1992, by which (A 10)
becomes

Ax

A
= − G

(1 + G)2

(
1 + 1

2
G (1− cosh (2kh))

) hx
h
. (A 12)

This result is identical to the one derived by Madsen & Sørensen (1992) using energy
flux considerations and Stokes linear wave theory.
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